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Alfvén soliton and emitted radiation in the presence of perturbations
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Soliton perturbation theory based on the inverse scattering transform method is applied to the derivative

nonlinear Schrodinger equation, which describes nonlinear Alfvén waves propagating quasiparallel to the
external magnetic field. Radiative effects are considered. Spectral distributions of the emitted energy and
magnetic helicity rates (in the wave number domain) are calculated analytically. Several forms of perturbations
are considered, including the finite electric conductivity, the effect of resonant particles (nonlinear Landau
damping), and the influence of the random inhomogeneity of the plasma density. The space structure of the

radiative field is determined for a perturbation in the form of the finite electric conductivity.
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I. INTRODUCTION

It is well known [1] that the evolution of small-amplitude
nonlinear Alfvén waves propagating parallel or at a small
angle to the background magnetic field in a low-8 (the ratio
of kinetic to magnetic pressure) plasma is governed by the
derivative nonlinear Schrodinger (DNLS) equation. Recently
it was shown [2] that the DNLS equation also describes
large-amplitude magnetohydrodynamic waves in a high-8
plasma, propagating at an arbitrary angle to the ambient
magnetic field. Originally, the DNLS equation was derived
by Rogister [3] from the Vlasov kinetic equation and then by
Mjglhus [4] and Mio et al. [5] for a cold plasma. Later,
Spangler and Sheerin [6] and Sakai and Sonnerup [7] gener-
alized these results to a finite-3 plasma. A comprehensive
review of the theory of small-amplitude Alfvén waves based
on the DNLS equation has been given by Mjglhus and Hada
[1].

Kaup and Newell showed [8] that the DNLS equation was
solvable by the inverse scattering transform (IST) method
and it admitted N-soliton solutions. Then it was shown [9]
that the DNLS equation is a completely integrable Hamil-
tonian system and the corresponding ‘“‘action-angle” vari-
ables were explicitly calculated.

In reality, additional terms are often present in the DNLS
equation. They can include effects of dissipation, influence
of external forces, inhomogeneity of the plasma density, etc.
[1,10-12]. These terms violate the integrability, but being
small in many important practical cases, they can be taken
into account by perturbation theory. For Alfvén waves propa-
gating along the static magnetic field B, which is directed
along the z axis, the perturbed DNLS equation can be written
in the following normalized form:

du  Fu J .

. . 2 *

—+ 5 +is— =plu,u |, 1

it lsﬁz(|u| u) = plu,u’] (1)
where u(z,1) is the normalized transverse magnetic field per-
turbation u=(B,+iB,)/(2|1- B|B,). The field u(z,?) and its
conjugate u"(z,t) correspond to the right- and left-hand-side
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circular polarizations, respectively. Time ¢ and space coordi-
nate z are normalized in terms of 1/w,; and v,/ w,;, respec-
tively, where w. =eBy/Mc is the ion-cyclotron frequency
and v,=By/V4mnoM is the Alfvén velocity. The parameter
,8=vf/ vi is the ratio of kinetic to magnetic pressure, and v,
is the sound speed. The sign s of the nonlinear term in Eq.
(1) corresponds to s=sgn(1-). Equation (1) is written in
the frame moving with the Alfvén velocity v,. The perturba-
tion is represented by the term plu,u"].

The most powerful perturbative technique, which fully
uses the natural separation of the discrete and continuous
(i.e., solitonic and radiative) degrees of freedom of the inte-
grable equations, is based on the IST [13-15]. For the DNLS
equation a perturbation theory using the IST was developed
by Wyller and Mjglhus [11]. They applied their formalism to
a study of the influence of dissipative perturbations (finite
Ohmic resistance [11] and nonlinear Landau damping [12])
on a single Alfvén soliton described by the DNLS equation.
The authors of Ref. [11] derived the corresponding adiabatic
equations which are evolution equations for discrete-
spectrum (solitonic) scattering data. In the frame of the IST,
they calculated also the reflection coefficient which describes
the excitation of the radiative degrees of freedom [11,12].
That allowed an explanation of why the adiabatic ansatz fails
to produce a good approximation of the perturbational dy-
namics in the anomalous regime (i.e., when the soliton
moves in the positive z direction) of the Alfvén solitons. This
result was confirmed also by numerical analysis [12]. Note
that adiabatic equations for soliton parameters can be ob-
tained, generally speaking, with the aid of integrals of mo-
tion, without using the IST. On the other hand, only the
perturbative technique based on the IST allows one to take
into account the excitation of continuous (radiative) degrees
of freedom, which gives rise to qualitatively new effects in
one-soliton dynamics. These effects include, in particular,
perturbation-induced emission of radiation by a soliton,
long-range corrections to the soliton’s shape (“tails”), and the
generation of new (secondary) solitons [14,15,17]. In addi-
tion, the IST formalism allows one to obtain a criterion of
applicability of the adiabatic approach [11,12].

The aim of this paper is to consider radiative effects under
the influence of perturbations on the Alfvén soliton. We ana-
lyze the evolution equation for the continuous scattering data
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and obtain spectral distributions (in the wave number do-
main) of the energy and magnetic helicity emission rate for
several forms of perturbation. For a perturbation in the form
of the finite electric conductivity we determine the space
structure of the radiative field.

The paper is organized as follows. In Sec. II we review a
theory of the scattering transform for the linear eigenvalue
problem associated with the DNLS equation. In Sec. III in-
tegrals of motion are written in terms of the discrete and
continuous scattering data and the relation between a spectral
parameter of the eigenvalue problem and wave number of
the radiation is established. Dissipative perturbations (finite
electric resistance and nonlinear Landau damping) are con-
sidered in Sec. IV, and random fluctuations of the plasma
density are considered in Sec. V. The conclusion is made in
Sec. VL.

II. INVERSE SCATTERING TRANSFORM FOR THE DNLS
EQUATION

In this section we review the theory of the scattering
transform for the DNLS equation, following (with slight
modifications) Refs. [8,9]. Equation (1) with p[u,u"]=0 can
be written as the compatibility condition

aU-9,V+[U,V]=0 (2)
of two linear matrix equations (Kaup-Newell pair) [8]
d.M(z,t,\) = UM(z,1,\), (3)
aM(z,t,\) = VM (z,1,\), (4)
where \ is a spectral parameter and
U=—iNloy+\0, with Q= (_(L* g) 5)

V==2iN03+2N°Q0 - iN’ Q%03+ \Q* - iNQ.05,  (6)

b )
3=\ -1

is the Pauli matrix. The Jost solutions M*(z,\) of Eq. (3) for
real \? (i.e., fundamental solutions) and for some fixed ¢ are
defined by the boundary conditions

M*(z,\) = exp(— iN2o3z2) + o(1),

where

asz— o, (7)

The matrix Jost solutions (7) can be represented in the form
M~=(¢,—&) and M*=(i), ), where ¢ and ¢ are independent
vector columns. The scattering matrix S(\) relates the two
fundamental solutions M~ and M*:

M~(z,\) = M*(z,M\)S(N). (8)

The scattering coefficients are defined by

o=ay+ by, (9)

G=—ay+bi, (10)

so that the scattering matrix is
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a(\) _m)) o

0= (b()\) an)

where a@+bb=1. The vector functions ¢(z,\) and Az,\)
and the coefficient a(\) turn out to be analytically continu-
able to Im A\>>0. As follows from Eq. (3), the following
important symmetry properties are valid:

e\ =—ioye (N, (N =i (\). (12)

The zeros k?=§j+i77j (j=1,...,N) of the function a(\) in the
region of its analiticity Im \2>0 give the discrete spectrum
of the linear problem (3) and correspond to solitons. Under
this, the functions ¢(z,\;) and #(z,\;) are linearly depen-
dent:

e(zN) =bjz.N),  B(e\)==bgz\).  (13)

The Jost coefficients a(\) and b(\) with real A? constitute the
continuous spectrum scattering data, and the set of complex
numbers \; and b; are the discrete spectrum scattering data.
The time evolution of these scattering data turns out to be
trivial:

al\,0)=a(\,0),  b(\,1) =b(\,0)exp(4int),  (14)

N(1)=Nj0), (1) =b,(0)exp(4iN‘). (15)

A nonsoliton (radiative) part of the field is completely de-
fined by the continuous spectrum—namely, by the so-called
reflection coefficient r(\)=b(\)/a(\) with Im A*>=0. The
field u(z,1) is expressed in terms of the scattering data and
Jost solutions of Eq. (3) as follows [9]:

N
1 _ 4 .
u(z,1) = ;f (i + Fyg)dN + 72 (Cjwij ¢ ‘ﬂ%,j)’
r j=1

(16)

!

where  F(\)=b(\)/a(\)=r"(\"), ¢;=bjla;  with a;
=da/d)\|)\=)\_. The contour I' consists of lines from io to 0,
from —io to 0, from O to o, and from O to —o. The first term
in Eq. (16) is the radiative part of the field, while the second
one corresponds to the soliton contribution. If the reflection
coefficient r(\) is identically zero, then u(z,r) is an exact
(one- or multiple-) soliton solution of the DNLS equation.
The reflectionless scattering data with the single (N=1) zero
Nj=&+in of the function a(\) correspond to the one-soliton
solution (a single Alfvén soliton)

27 cosh(kyy —i6) i

= , 17
[\1] cosh?(kqy + iﬁ)e (17

uy(z,1)

where we have introduced the notations

b= o+ 871 =28y, (18)

v=-4§

The parameters z, and ¢, determine the initial position and
initial phase of the soliton. The parameters 7 and ¢ are, up to
constant multipliers, the soliton inverse width k, and the soli-

y=zZ-0vt—-2p,

ko=2n, O=arg(\,). (19)
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ton velocity v, respectively. The soliton solution of Eq. (17)
(in somewhat different form) was first obtained by Mjglhus
[4] and then rederived [8] with the use of the IST. Explicit
expressions for the one-soliton Jost solutions and corre-
sponding scattering data are given in Appendix A.

II1. INTEGRALS OF MOTION

Since the DNLS equation is completely integrable, it has
an infinite set of integrals of motion. We will consider only
three of them: the energy,

E= J |u|*dz, (20)

Hamiltonian

and magnetic helicity, defined as

K:J A -Bdz, (22)

—00

where the vector potential A is introduced through the mag-
netic field B as B=V X A. It was shown [16] that the mag-
netic helicity K belongs to a hierarchy of nonlocal conserva-
tion laws of the DNLS equation. The infinite hierarchy of
nonlocal integrals of motion was first introduced in Ref. [9]
(see also Ref. [17]). In terms of the field u the (normalized)
helicity is written as

ktf |

The integrals of motion can be explicitly expressed in terms
of the continuous (radiative) and discrete (solitonic) scatter-
ing data. In particular, one can write [9]

ufz u'(z)dz' - u*fz u(z')dz')dz. (23)

o ©

N )\2
E=-2i> In=5+ | ENd, (24)
=1 N r
N
H=4i2 (N -\ + f H(\)dX, (25)
j=1 r

Y1
=1 AN r

N
where
(v = HLLEHVTN] o
HN) =-2N2EN), K\ =- #50\). (28)

In Egs. (24)—(26) the soliton contribution (Ej-vzl) is separated
from that of the radiative component (fd\) of the wave field
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described by the continuous-spectrum scattering data. The
dispersion relation [taking ~exp(—ikz+iwt)] corresponding
to the linearized version of Eq. (1) is w(k)=—k?, which
means the ¢ dependence ~exp(—ik2t). On the other hand, as
follows from Eq. (14), in the nonlinear case the ¢ dependence
for the continuous spectrum data is ~exp(4i\*f). Moreover,
one can show that in the linear limit we have %HO, while
7 is reduced to exp(—2iN*z—4iN*) and r*/\" is just the
Fourier transform of u(z,#).This reflects the general property
of the IST (see, for example, Ref. [18]): in the linear limit it
is equivalent to the usual Fourier method. Then, considering
the radiative component as a superposition of free waves
governed by the linear Schrédinger equation, one can con-
clude that the spectral parameter \ is connected to the wave
number of the emitted quasilinear waves k by the relation

k=2)\2, (29)

where \? is real (continuous spectrum). The integral over the
contour I" in Egs. (16) and (24)—(26) can be transformed into
the one over the real axis k. If only one soliton is present in
the general field (i.e., N=1 and N2=£+i7), we have

E=860+ f E,aak)dk, (30)

H=-87n+ H,.ak)dk, (31)
27 *

K=- m + B K uak)dk, (32)

where

In[1 + sgn k|r(k)[*]
wk ’

Erud(k) = (33)

Hrad(k) == 2k5rad(k)’ Krad(k) == ﬁgmd(k) . (34)

The quantities &,,,(k), H,,4(k), and K, ,(k) can be regarded
as spectral densities (in the wave number domain) of the
energy, Hamiltonian, and magnetic helicity carried by the
radiation. Note that, as follows from Egs. (30)—(32), for the
pure soliton solution (r=0) there exists the following inter-
esting relation between soliton energy, Hamiltonian, and
magnetic helicity:

KH =16 sin’(E/8). (35)

Equation (16) for the general field becomes

(" . 42 -
u(z,t) = 7—J (Ry7 + R"y7)dk + ;E (¥ + 1A,
o j=1
(36)

where we have introduced the function R(k)=r/X\.
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IV. DISSIPATIVE PERTURBATIONS IN THE DNLS
EQUATION

In this section we investigate radiative effects which arise
under the influence of dissipative perturbations on the Alfvén
soliton. We will consider two different cases: the collision-
dominated case, when finite electric conductivity (and/or ion
viscosity) is taken into account in the basic equation (1), and
collisionless nonlinear Landau damping. In the first case the
perturbation term in Eq. (1) has the diffusive form

Y (37)
=1 5,
P 97
where the diffusion coefficient is [20]
1 ) C2 ) Wei
D=—|\—+—mnp|—, 38
) ( P 7 U,%, (38)

where 7, is a coefficient of ion viscosity and 7, is the resis-
tivity. Expressions for #; and 7, in some limiting cases can
be found in Ref. [18]. The conditions under which the diffu-
sive term, Eq. (37), can be considered as a small perturbation
are (in the range v;~v,) [20]

(CRSQ TS (39)
or
W, < v, < w \NMIm, (40)

where v; is the ion thermal velocity and v; is the ion collision
frequency. In the second, collisionless case the perturbation
in Eq. (1) is presented by the resonant-particle term [19,20]

o ’ 2
p=i£i<qu —|M(Z ) dz’), (41)

Tz w 7' -z

where P is the symbol of the principal value. Including this
kinetic term in the DNLS equation is especially important for
the case of B~ 1 and the electron-to-ion temperature ratio
T,/T;~1 (for example, in solar wind plasma), when Alfvén
waves couple to strongly damped ion-acoustic modes
[21,22]. The coefficient C in Eq. (41) depends on the veloc-
ity distributions of the particle species. As was pointed out in
Refs. [12,19], when restricting the study to waves propagat-
ing in plasmas with isotropic Maxwellian-distributed elec-
trons and ions, the effect of resonant particles is weak and
can be regarded as a perturbation (i.e., C< 1) when the
Alfvén velocity v, is much larger than the ion sound velocity
v, (cold plasma with B« 1). Under this,

2

[ m v v
C=+/—2ex <——A>, > vy, 42
27Mu, p 202 Ua > Uy (42)

e

where v, is the electron thermal velocity. Adiabatic equations
describing the slow evolution of the soliton parameters
(width and velocity)—i.e. the discrete spectrum scattering
data—under the action of perturbation of the form, Eq. (37)
or Eq. (41), were obtained and analyzed in Refs. [11,12]. The
adiabatic approximation implies that 7(A\)=0 and an unper-
turbed instantaneous shape of the soliton is assumed. Now
we are interested in radiative effects which are described by
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the continuous spectrum scattering data—namely, by the re-
flection coefficient r(\).

In the presence of a perturbation [i.e., p#0 in Eq. (1)],
the reflection coefficient #(\) is no longer zero, and for small
p we have |[r(\)| < 1. Thus, the spectral density of the en-
ergy, Eq. (33), can be written as

|r(k)|?
k|

gmd(k) = (43)
The emission intensity is characterized by its power—i.e.,

the energy emission rate. The emission power spectral den-
sity W(k) =d€,,,/ dt is

2 #
W(k) = ——Re{r (k) dr(k)/dt}, (44)
k|
where Re{:--} stands for the real part, so that we need to
calculate the reflection coefficient r(k). An equation describ-
ing the time evolution of r(k) (derivation see in Appendix B)
is

ar

P 4iN*r =i J (s, +p" ¥ dz, (45)

where IZLS and l_ﬂz,S are one-soliton Jost solutions defined by
Egs. (A2) and (A3), respectively.

Consider first the collision-dominated case, when the per-
turbation p in Eq. (45) is given by the diffusive term, Eq.
(37). If p=0, the time evolution of the reflection coefficient r
is given by Eq. (14). The right-hand side of Eq. (45) de-
scribes the influence of the perturbation on r in the presence
of the soliton. As was said above, in the linear limit (vanish-
ing nonlinearity and no solitons) r/\ is a Fourier transform
of u”(z,1) and we insert a diffusive term I'=Dk? in the left-
hand side of Eq. (45) in order to take into account a linear
damping of the quasilinear waves. Then, Eq. (45) becomes

J . .
Bf+Ixx»-4m4r:eﬂﬂmﬂﬂmﬂf(xx (46)

where Q(N\)=8(\*+7?), T'(\)=4D\*, and F(\) is some func-
tion, which can be written in explicit form after calculating
the integrals in Eq. (45). The expression for F(\) for the
general soliton solution, Eq. (17), turns out to be too com-
plicated, so that we restrict ourselves to the case when =0
(motionless soliton in the frame moving with the Alfvén ve-
locity v,). In this case one can get for F the expression

p(1+ p?) (™ — pe=™4)

F(\) =4mwD\ 7
(V)= 4mDhy (u — i)*cosh(mu/2)

. (47)

where u=\%/7.
If #(\,0)=0 at the initial time #=0 (i.e., one pure soliton),
then the solution of Eq. (46) is

L)‘)e4i"4’(e‘i9(”)’ —e V). (48)

"D =100 im

Thus, in the quasistationary regime we have, for the reflec-
tion coefficient,
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FIG. 1. Spectral density of power emitted by the soliton for D
=0.1 and ky=2.

FO\) e—iQ()\)t+4i)\4t

N)=————"""——"— 49
A VNN (49)
and, therefore,
. ( d_) P 0
\ar) T

Using Egs. (44), (47), and (50), we find a final expression for
spectral density of power emitted by the soliton in the pres-
ence of dissipative perturbation of the form Eq. (37):
27TD3k0/.L4(,lL€_7T’u/4 _ e'lT,u/4)2
[D*u* +4(1 + p?)]cosh?(mu/2)’

Wi(k) = (51)
where the parameter u=k/k (the normalized wave number)
is the ratio of the soliton width to the wavelength of the
emitted waves. The spectral composition Q(k)=dIC,,,(k)/dt

of the emitted magnetic helicity rate, as follows from Eq.
(34), is

o) =- . (52)
2kope

It is interesting to note that Q(k) is a universal function of
only one (for fixed D) dimensionless parameter u. The spec-
tral distribution W(k) of emitted power is plotted in Fig. 1 for
D=0.1 and ky=2. The distribution has two asymmetrical
peaks and exponentially decaying tails. The left peak is
higher than the right one. It should be noted here that this
picture is valid only for the right-hand-side polarized soliton
and for s >0 (i.e., for a plasma with 8<1) in Eq. (1). Since
the case s <0 can be obtained from s> 0 by a transformation
z——z, one can see that in a plasma with 8>1 (i.e., when
kinetic pressure of plasma is larger than the magnetic one) or
for the left-hand-side polarized soliton, the right peak in Fig.

1 becomes higher than the left one.
Having determined the reflection coefficient r, we can cal-
culate the radiative field u.(z,7) by substituting the one-
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soliton Jost solutions ¢ ; and 1Zm into the first term of Eq.
(36). Making a change of variable k=kyu in the integral in
Eq. (36), one can write

u(z,1) = % f (RY; + R ), (53)

where, as follows from Eq. (49),
\"EWDM(M + i)(eﬂ',u/4 _ Me_WM/4)€_i(2+M2)k%t
" Vko[Dp? = 2i(1 + pA)](w — i) cosh(mu/2)
(54)

R(w)

Integral in Eq. (53) can be evaluated with the aid of residues.
For example, the function Rtﬁf . in the upper half plane of the
complex variable w (this corrésponds to the region z>0) has
poles at w=i and pu=-1+iD/4 (taking into account that
D« 1). In addition, it has an infinite set of poles u,=i
+2ni (where n=0,1,2,...), originating from cosh(7ru/2) in
the denominator of Eq. (54). Calculating the residues, one
can see that, for the region not too close to |z|=0 (more
exactly, the relation |z| > 1/k, must be satisfied), the main
contribution in Eq. (53) comes from poles with the smallest
imaginary parts. The contribution from poles with suffi-
ciently large imaginary parts vanishes rapidly as |z| > 1/k.
Then, since D <1, one can take into account only the poles
containing D in the imaginary parts. Carrying out the calcu-
lations, we find that the radiative field in the region |z|
>1/kjy and at times ~1/D can be estimated as

"y~ \2komD o~ ikolzl—koDlel/4 A
2 cosh(7/2) cosh?(kyz + im/4)
h(kyz + im/4 2
| € (koz l.7T )_1} ’ (55)
cosh(kyz — im/4)

where A=—cosh(7w/4) and B=-sinh(7/4) for z>0 and A
=sinh(7/4), B=—cosh(m/4) for z<0.

In the general one-soliton case, an exact calculation of
integrals in Eq. (45) for a perturbation given by Eq. (41) is
not possible, so that we restrict ourselves to the case of the
so-called algebraic soliton [8]. The algebraic soliton solution,
can be obtained from the solution Eq. (17), by taking the
limit 7—0 (i.e., the zero A7 is approaching the real axis)
provided that £<<0:

=iy )32
Uug= |us|el¢< lvy) > (56)
1 +ivy
| §
=4\, 57
|”s| 1+16§2y2 (57)
y=z-vi—z5, ¢=¢y—-2&, v=-4& (58)

This soliton has algebraically decaying tails and, as follows
from Eq. (30), the largest (E,=4) energy. The correspond-
ing Jost solutions are given in Appendix A. Substituting Eqs.
(41), (56), (A9), and (A10) into Eq. (45) we get Eq. (46) with
QN\)=8N*(A\2+|&|) and
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FIG. 2. The shape of the function |F(w)|* in Eq. (62) for C
=0.1 and ky=2
FO\) ==287CNY| g2 [ 1 + |a|H(- a)],  (59)
where a=1+\?/|£| and H(x) is Heaviside step function:

x<0

Hx) = {0’ ’ (60)

1, x=0.

Since linear damping is absent in this case, we will set in the
final answer I'— 0. Denoting u=k/k, with ky=2|§|, we have

49
FP= 2ROl uPel + ol -, (6]

where a=1+pu. Since ['/[I?+Q?]— 78(Q) as I'—0, we
find, for the spectral density of emitted power the expression,

2|FP?
[kl
One can see that the emission is concentrated at two points

of the spectrum: k=0 and k=-k,. The plot of the function
|F(w)|? is presented in Fig. 2.

W(k) = S(2k> + 2kky). (62)

V. INFLUENCE OF FLUCTUATIONS OF THE PLASMA
DENSITY

In this section we consider the influence of random fluc-
tuation of the equilibrium plasma density on the Alfvén soli-
ton. As in previous section, we are interested in radiative
effects.

The more general form of the nonlinear term in Eq. (1) is
id.(nu), where n is the plasma density perturbation. In such
form Eq. (1) is valid, for example, for the case when Alfvén
waves couple strongly with magnetoacoustic modes and
there is an independent evolution equation [23,24] for n. The
static case n=—|u|? corresponds to the DNLS equation (1). In
the presence of fluctuations of the plasma density we repre-
sent (for a given realization) the density as n—n+f, where f
stands for the random part. Under this, in the static case the
perturbation term in Eq. (1) takes the form

PHYSICAL REVIEW E 74, 016603 (2006)

p=it-(fu, 63)
Z

where f(z,1) is assumed to be a real Gaussian homogeneous
random field with the zero average (f)=0 and the correlator

(flz.0f(Z' 1) =

where the angular brackets denote ensemble averaging.

Substituting Eq. (63) into Eq. (45) and using Eq. (3) one
can obtain for the function p(\)=r(\)exp(—4i\*t) the equa-
tion

D(z-7")B(t-1'), (64)

d ) .
Ef = —2inedN f )G\, z,1)dz, (65)

where

G(N.z.t) = NA(ughy  + u 47 ) + 2iNu [ i . (66)

Multiplying the right-hand side of Eq. (65) by exp(et) with
an infinitely small >0 (as usual, this implies adiabatically
turning on a perturbation that was absent at /=—0) and inte-
grating, we get

t o0
p=—2i\ f f Nt DG (N2, Ddrdz. (67)

Multiplying Eq. (65) by the complex-conjugate expression
(67) and averaging yields

*d t B o A
<rd_:> — 4|)\|Zf J f 841)\4(T—t)+ETB(t_ 7_)

X D(z-z")G\\,z,0)G"(\,z', T)d7dzdz’ .
(68)
Introducing Fourier transforms of the time and space correla-
tors B(r) and D(x) through

B(r) = f ’ B(w) exp(— iot)dw, (69)

D(z) = J D(q) exp(~ igz)dq, (70)

calculating integrals over z and z’ in Eq. (68), we can per-
form then the integration over 7in Eq. (68) and, after lengthy
but straightforward calculations, obtain

Ar\ 167y plp’
"ar] T

[1+(u+v)°PV1+12

f f iB(w)D(q)*(q)
2 d dq,
o (h— w—quv +i€) cosh*(mal2)
(71)
where we have introduced the notations
h=—=2k(1 + u?) — wkov, (72)
=—¢&n a=u+v+qglky, (73)
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FIG. 3. Spectral density of the emitted power for different val-
ues of v and for Dy=0.01, ky=1, and ¢.=5.

1(q) =1+ 1%(5qlkg — 8v—2u)e?
— [Buglky+2u* + 4(1 + 1) ]e~ . (74)
Then, making use of the relation lim, ,(y—ie)~'=P(1/y)

+imd(y), where P is the symbol of the principal value, one
can find

Re< *dr> 167 77|
r h— =
dif [+ (u+ )N +07

" f * B(h- qu)D(q)I(q)

_.  cosh’(mral2)

dq. (75)

Substituting Eq. (75) into Eq. (44) gives the averaged power
spectral density (W(k)) emitted by the soliton.
Consider first the case when f(z, 1) is a random function of

z only (space irregularities), so that we have B(w)=8(w). In
this case the averaged emission power spectral density is

82kou>D(hiv) P (hiv)
[1+(u+ v)z]zy’/l + 12 cosh (12 - u2 - 1)/2v]
(76)

(W(k)) =

which can be explicitly written for the arbitrary form of the

correlator 5(q). In particular, in the case of a noise spectrum
of Lorenzian shape we have

DOq('

D)= (g -q0)*+ 471

(77)

where D is the integral intensity of the noise. The spectral
composition of emitted power is shown in Fig. 3 for different
values of v=—n/¢ (with g.=5, ko=1, Dy=0.01).

Consider now the case when the space part £(z) of the
random function f(z,7) has the form

PHYSICAL REVIEW E 74, 016603 (2006)

£(z) = gy cos(goz + ), (78)

where the random amplitude g, is a zero-mean, normally
distributed value with variance o2 and the random phase 9 is
uniformly distributed between 0 and 2. The correlation
function of such a process is D(z)=(02/2)cos(gyz) or, in the
wave number domain,

D(g) = %[5(61 = qo) + &g +qo)]. (79)

In this case the space noise has an infinite correlation length
and is concentrated at the wave number g,. Then, the spectral
density of the emitted power is

4 || p*o?
[1+(u+ V)z]z\’/l + 17

E(h - 6]00)12(6]0)
cosh?(ma,/2)

(W(k)) =

E(h + 6]00)12(— qo)
cosh?(ma_/2) ’
(80)

where a,=u+v+qy/ky, and can be written in a closed form

for the arbitrary frequency correlator B(w). It follows from
Eq. (80) that in the case when only space irregularities are
present, the emission is concentrated at four points of the
spectrum:

s
kyp=[-v = \v? - 8(2k5 + qov) /4 (81)

and
k4 =[-v % v - 8[(2K2 — gov) /4. (82)

One can see that for the points k; , the emission takes place
provided that the soliton velocity satisfies the conditions v

[2.12 (2.2 .
>4(qo+\qy+ky) or v<4(go—qy+k;). For the points ks34
the corresponding conditions have the same form except that
qo changes its sign.

VI. CONCLUSION

In this paper we have applied soliton perturbation theory
based on the inverse scattering transform method to the study
of radiative effects which arise under the action of perturba-
tions on the Alfvén soliton. We have derived equations de-
scribing the evolution of the continuous spectrum scattering
data. Several forms of perturbations have been considered,
including the finite electric conductivity, the effect of reso-
nant particles (nonlinear Landau damping), and the random
inhomogeneity of the plasma density. Spectral distributions
(in the wave number domain) of the emitted energy and mag-
netic helicity rates have been calculated analytically. For a
perturbation in the form of the finite electric conductivity we
also determined the space structure of the radiative field.

Note that numerous satellite observations of the magnetic
activity in the solar wind plasma have exhibited the nonlin-
ear nature of Alfvén waves [1,26,27]. In spite of its simplic-
ity, the DNLS equation, being corrected with additional
terms, seems to be quite adequate for modeling weakly non-
linear Alfvén waves in space plasma, including solitons
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[21,22]. Though the quantitative agreement between obser-
vations and theory still needs considerable efforts, the results
of the present paper—namely, the asymmetry of the energy
spectral distribution—may be used for identification of the
left- and right-hand-side polarized solitons in space plasma
observations. Furthermore, new observations in space
plasma could be conducted to investigate the possible con-
nection between the structure of the soliton radiative tails
and rotational discontinuities at the edge of the nonlinear
Alfvén waves [26,27].

APPENDIX A: ONE SOLITON SCATTERING DATA AND
JOST SOLUTIONS

The one-soliton scattering data are

AZ(N2 =\

\)= oo b\ =0, N=¢&+in. (Al
a( ) )\%()\2_)\12) ( ) 1 f n ( )
The one-soliton Jost solutions are [25]
_ )\ e—z)\ —2iN*
= NAS () - N P A2
=T VAo -EL a2
_ N NemiNe2int
= w5 3 A, A3
¢2,‘ )\1()\2_)\%) I(Z ) ( )
where
i exp(i
Al(z,t)=—77p—d))., (A4)
[\{| cosh(kyy +i6)
cosh(kyy +i6
Anlz ) = hkoy +76) (A5)

cosh(kgy —i6)

Here, ¢, kg, y, and 6 are the same as in Eqgs. (18) and (19).
Under this,

2iA(z,1)

A (A6)

u(z,1) =

The expressions for the Jost solutions ¢;, @, and i, can be
obtained from Egs. (A2) and (A3) with the aid of Egs. (9),
(10), and (12).

For the algebraic soliton (7— 0, £<0) we have

O=7/2, N =¢ v=-4¢ (A7)
y=z-vi—-zo, ¢$=ddy—28y, (A8)
and the corresponding Jost solutions are
B oiNz2iN .
=—————|NA(z,0) - €], A9
‘/fl,x ()\2—5) [ 2(Z ) |§] ( )
o heiNet
=7 Az, (A10)
2 ()\2 _ é;) 1
where
2i\s"—_ exp(ig)
Al(z,t)=—§ pli¢ (A11)

(1-4igy)
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(1-4iéy)

(1+4igy) (Al2)

AZ(ZJ) =

APPENDIX B: DERIVATION OF PERTURBATION
THEORY EQUATIONS

Equations describing the evolution of the scattering data
in the presence of perturbations for the DNLS equations
were first obtained by Wyller and Mjglhus [11]. Since a de-
tailed derivation of these equations was absent in Ref. [11],
we present the derivation following Ref. [25].

Equation (1) can be cast in the matrix form

dU-3.V+[UV]+P=0, (B1)
where
0 i\
P=< o ”). (B2)
—i\p 0

From Eq. (B1) and the fact that M* satisfies Eq. (3) one can
get

(d.— U)(d,— V)M* + PM*=0. (B3)

Introducing a new unknown J*(z,#,\) defined through the
relation

(8, = V)M* = M*J*, (B4)

one can obtain that J* satisfies (9ZF=—MJ£‘1PMi and, there-
fore, J*=C *~ [1_M* ~'PM*dz’', where the constant matrices
C* are determined from the boundary conditions at x
— +00, Since V=—2i)\4a'3 as z——=+%, we have, from Eq.
(B4), C*=2iN*05 and, hence, the following equations of mo-
tion for M*:

Zz
(d,- VIM* = M{Zi)\“@ - f (Mi)‘lPMidz’] .

(B5)

Equation (B5) is valid only for Im A>=0. Introducing the
matrix M(z,7,N)=(¢, 1), columns of which (¢ and ) admit
analytical continuation to Im A>>0, and as before defining
the new unknown matrix J(z,¢,\)=(J;,J,) through the rela-
tion

(6,— VM =MJ, (B6)
one can similarly obtain
2l>\4 |
J = M Pedz?’, (B7)
Jy= M Pydz’ B8
2= ( 217\4> f iz ( )

Thus, we have the equations of motion valid for Im A>>0
except at \;, where M fails to be invertible. Making the
natural assumption that the zeros A=N\; are simple, one can
show (see below) that each singularity is removable since
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det M =a. Differentiating Eq. (8) with respect to ¢ and using
Eq. (B5) yields

3S(tN) + 2iNY 03, 8(1,\) ]
=—f (M (2,6, NV PM~(z,1,\)dz. (B9)

The equations of motion for the coefficients a(r,\) and
b(t,\) are contained in Eq. (B9):

©

da .
—==Ii\

B10
P B (B10)

(pirer+p th))dz,

ab - .
E—4i>\4b=i>\f (pihor+p Ihe)dz.  (B11)

The expression defining the zeros N (z) of a(t,\) is
a(t,\f(#))=0. Differentiating with respect to ¢ gives

I\,
da(t,\(1)) + Ela =0, (B12)

where aj’.:da/d)\|)\=)\j. Using Egs. (B10) and (B12) we have
N 20N (7 .
EL = Tj (Pl/fz,j<P2,j+P b e )dz, (B13)
JoT

where ¢, ;, ¢, 1, and ¢, ; are the corresponding Jost
solutions evaluated at A=\ ;. To obtain the evolution equation
for b;, we differentiate Eq. (13) with respect to #, use Egs.
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(B6), (B7), and (B8), and take the limit A —\; applying
[since det M(\;)=a(\;)=0] the 1'Hopitale rule and using
again Eq. (13). As a result, one obtains

db; i [ d
I _4i\*p. = IJ —_ —b.
ot IND; a; B PQDZ&)\(% j%)

.2 ,
+p @15(@1—[%%)}(& . (B14)

where, after differentiating, the integrand is evaluated at
A=N\;. Equations (B10), (B11), (B13), and (B14) describe the
evolution of the scattering data.

If p[u,u’] is a small perturbation, one can substitute the

unperturbed N-soliton solutions ¢, lz, ¢, and ¢ (for a conve-
nient way for writing down these solutions see [25]) into the
right-hand side of Egs. (B10), (B11), (B13), and (B14). This
yields evolution equations for the scattering data in the low-
est approximation of perturbation theory. This procedure can
be iterated to yield higher orders of perturbation theory. The
appearing hierarchy of equations is applied to an arbitrary
number of solitons and, in particular, describes nontrivial
many-soliton effects in the presence of perturbations. In this
paper we restrict ourselves to the case of one-soliton solu-
tions and substitute Egs. (A2) and (A3) into the right-hand
side of Egs. (B10), (B11), (B13), and (B14). Taking into
account that in the zero approximation da/dt=0 and ¢,
=ay,, from Eqs. (B10) and (B11) we obtain the equation, Eq.
(45), for the reflection coefficient r=b/a.
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